Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645184

RESUMO

Regulatory T cells (Tregs) have potential as a cell-based therapy to prevent or treat transplant rejection and autoimmunity. Using an HLA-A2-specific chimeric antigen receptor (A2-CAR), we previously showed that adoptive transfer of A2-CAR Tregs limited anti-HLA-A2 alloimmunity. However, it was unknown if A2-CAR Tregs could also limit immunity to autoantigens. Using a model of HLA-A2 + islet transplantation into immunodeficient non-obese diabetic mice, we investigated if A2-CAR Tregs could control diabetes induced by islet-autoreactive (BDC2.5) T cells. In mice transplanted with HLA-A2 + islets, A2-CAR Tregs reduced BDC2.5 T cell engraftment, proliferation and cytokine production, and protected mice from diabetes. Tolerance to islets was systemic, including protection of the HLA-A2 negative endogenous pancreas. In tolerant mice, a significant proportion of BDC2.5 T cells gained FOXP3 expression suggesting that long-term tolerance is maintained by de novo Treg generation. Thus, A2-CAR Tregs mediate linked suppression and infectious tolerance and have potential therapeutic use to simultaneously control both allo- and autoimmunity in islet transplantation. One Sentence Summary: Alloreactive chimeric antigen receptor-engineered regulatory T cells limit diabetogenic T cell engraftment and function to prevent type 1 diabetes.

2.
JCI Insight ; 8(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37669115

RESUMO

Tregs expressing chimeric antigen receptors (CAR-Tregs) are a promising tool to promote transplant tolerance. The relationship between CAR structure and Treg function was studied in xenogeneic, immunodeficient mice, revealing advantages of CD28-encoding CARs. However, these models could underrepresent interactions between CAR-Tregs, antigen-presenting cells (APCs), and donor-specific Abs. We generated Tregs expressing HLA-A2-specific CARs with different costimulatory domains and compared their function in vitro and in vivo using an immunocompetent model of transplantation. In vitro, the CD28-encoding CAR had superior antigen-specific suppression, proliferation, and cytokine production. In contrast, in vivo, Tregs expressing CARs encoding CD28, ICOS, programmed cell death 1, and GITR, but not 4-1BB or OX40, all extended skin allograft survival. To reconcile in vitro and in vivo data, we analyzed effects of a CAR encoding CD3ζ but no costimulatory domain. These data revealed that exogenous costimulation from APCs can compensate for the lack of a CAR-encoded CD28 domain. Thus, Tregs expressing a CAR with or without CD28 are functionally equivalent in vivo, mediating similar extension of skin allograft survival and controlling the generation of anti-HLA-A2 alloantibodies. This study reveals a dimension of CAR-Treg biology and has important implications for the design of CARs for clinical use in Tregs.


Assuntos
Receptores de Antígenos Quiméricos , Camundongos , Animais , Antígenos CD28 , Linfócitos T Reguladores , Transplante Homólogo , Aloenxertos/metabolismo
3.
Transplantation ; 107(9): e222-e233, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528526

RESUMO

BACKGROUND: Type 1 diabetes is an autoimmune disease characterized by T-cell-mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include the use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft-versus-host disease (xGVHD). METHODS: We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4 + and CD8 + T cells and tested their ability to reject HLA-A2 + islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T-cell engraftment, islet function, and xGVHD were assessed longitudinally. RESULTS: The speed and consistency of A2-CAR T-cell-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of coinjected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, coinjection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2 + human islets within 1 wk and without xGVHD for 12 wk. CONCLUSIONS: Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of islet-replacement therapies.


Assuntos
Doença Enxerto-Hospedeiro , Insulinas , Transplante das Ilhotas Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Antígeno HLA-A2 , Leucócitos Mononucleares , Rejeição de Enxerto/prevenção & controle
4.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37561596

RESUMO

Adoptive immunotherapy with Tregs is a promising approach for preventing or treating type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B chain 10-23 peptide presented in the context of the IAg7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR redirected NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Cotransfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In WT NOD mice, InsB-g7 CAR Tregs prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising therapeutic approach for the prevention of autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Receptores de Antígenos Quiméricos , Camundongos , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Camundongos Endogâmicos NOD , Insulina/metabolismo , Linfócitos T Reguladores
5.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865123

RESUMO

Background: Type 1 diabetes (T1D) is an autoimmune disease characterised by T cell mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft- versus -host disease (xGVHD). Methods: We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4+ and CD8+ T cells and tested their ability to reject HLA-A2+ islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T cell engraftment, islet function and xGVHD were assessed longitudinally. Results: The speed and consistency of A2-CAR T cells-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of co-injected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, co-injection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2+ human islets within 1 week and without xGVHD for 12 weeks. Conclusions: Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of isletreplacement therapies.

6.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865264

RESUMO

Adoptive immunotherapy with Tregs is a promising approach for prevention or treatment of type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B-chain 10-23 peptide presented in the context of the IA g7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR re-directed NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Co-transfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In wild type NOD mice, InsB-g7 CAR Tregs stably expressed Foxp3 and prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising new therapeutic approach for the prevention of autoimmune diabetes. Brief Summary: Chimeric antigen receptor Tregs specific for an insulin B-chain peptide presented by MHC class II prevent autoimmune diabetes.

7.
Gene Ther ; 30(3-4): 309-322, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931871

RESUMO

A primary goal in transplantation medicine is the induction of a tolerogenic environment for prevention of transplant rejection without the need for long-term pharmacological immunosuppression. Generation of alloantigen-specific regulatory T cells (Tregs) by transduction with chimeric antigen receptors (CARs) is a promising strategy to achieve this goal. This publication reports the preclinical characterization of Tregs (TR101) transduced with a human leukocyte antigen (HLA)-A*02 CAR lentiviral vector (TX200) designated to induce immunosuppression of allograft-specific effector T cells in HLA-A*02-negative recipients of HLA-A*02-positive transplants. In vitro results demonstrated specificity, immunosuppressive function, and safety of TX200-TR101. In NOD scid gamma (NSG) mice, TX200-TR101 prevented graft-versus-host disease (GvHD) in a xenogeneic GvHD model and TX200-TR101 Tregs localized to human HLA-A*02-positive skin transplants in a transplant model. TX200-TR101 persisted over the entire duration of a 3-month study in humanized HLA-A*02 NSG mice and remained stable, without switching to a proinflammatory phenotype. Concomitant tacrolimus did not impair TX200-TR101 Treg survival or their ability to inhibit peripheral blood mononuclear cell (PBMC) engraftment. These data demonstrate that TX200-TR101 is specific, stable, efficacious, and safe in preclinical models, and provide the basis for a first-in-human study.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Órgãos , Receptores de Antígenos Quiméricos , Camundongos , Animais , Humanos , Linfócitos T Reguladores , Leucócitos Mononucleares/transplante , Antígenos HLA-A
8.
Bio Protoc ; 12(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36561116

RESUMO

Graft-versus-host disease (GvHD) is a significant complication of allogeneic hematopoietic stem cell transplantation. In order to develop new therapeutic approaches, there is a need to recapitulate GvHD effects in pre-clinical, in vivo systems, such as mouse and humanized mouse models. In humanized mouse models of GvHD, mice are reconstituted with human immune cells, which become activated by xenogeneic (xeno) stimuli, causing a multi-system disorder known as xenoGvHD. Testing the ability of new therapies to prevent or delay the development of xenoGvHD is often used as pre-clinical, proof-of-concept data, creating the need for standardized methodology to induce, monitor, and report xenoGvHD. Here, we describe detailed methods for how to induce xenoGvHD by injecting human peripheral blood mononuclear cells into immunodeficient NOD SCID gamma mice. We provide comprehensive details on methods for human T cell preparation and injection, mouse monitoring, data collection, interpretation, and reporting. Additionally, we provide an example of the potential utility of the xenoGvHD model to assess the biological activity of a regulatory T-cell therapy. Use of this protocol will allow better standardization of this model and comparison of datasets across different studies. Graft-versus-host disease (GvHD) is a significant complication of allogeneic hematopoietic stem cell transplantation. In order to develop new therapeutic approaches, there is a need to recapitulate GvHD effects in pre-clinical, in vivo systems, such as mouse and humanized mouse models. In humanized mouse models of GvHD, mice are reconstituted with human immune cells, which become activated by xenogeneic (xeno) stimuli, causing a multi-system disorder known as xenoGvHD. Testing the ability of new therapies to prevent or delay the development of xenoGvHD is often used as pre-clinical, proof-of-concept data, creating the need for standardized methodology to induce, monitor, and report xenoGvHD. Here, we describe detailed methods for how to induce xenoGvHD by injecting human peripheral blood mononuclear cells into immunodeficient NOD SCID gamma mice. We provide comprehensive details on methods for human T cell preparation and injection, mouse monitoring, data collection, interpretation, and reporting. Additionally, we provide an example of the potential utility of the xenoGvHD model to assess the biological activity of a regulatory T-cell therapy. Use of this protocol will allow better standardization of this model and comparison of datasets across different studies. This protocol was validated in: Sci Transl Med (2020), DOI: 10.1126/scitranslmed.aaz3866 Graphical abstract.

9.
Eur J Immunol ; 52(9): 1482-1497, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35746855

RESUMO

Regulatory T-cell (Treg) therapy is under clinical investigation for the treatment of transplant rejection, autoimmune disease, and graft-versus-host disease. With the advent of genome editing, attention has turned to reinforcing Treg function for therapeutic benefit. A hallmark of Tregs is dampened activation of PI3K-AKT signaling, of which PTEN is a major negative regulator. Loss-of-function studies of PTEN, however, have not conclusively shown a requirement for PTEN in upholding Treg function and stability. Using CRISPR-based genome editing in human Tregs, we show that PTEN ablation does not cause a global defect in Treg function and stability; rather, it selectively blocks their ability to suppress antigen-presenting cells. PTEN-KO Tregs exhibit elevated glycolytic activity, upregulate FOXP3, maintain a Treg phenotype, and have no discernible defects in lineage stability. Functionally, PTEN is dispensable for human Treg-mediated inhibition of T-cell activity in vitro and in vivo but is required for suppression of costimulatory molecule expression by antigen-presenting cells. These data are the first to define a role for a signaling pathway in controlling a subset of human Treg activity. Moreover, they point to the functional necessity of PTEN-regulated PI3K-AKT activity for optimal human Treg function.


Assuntos
Doenças Autoimunes , PTEN Fosfo-Hidrolase , Linfócitos T Reguladores , Fatores de Transcrição Forkhead/metabolismo , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Endocrinology ; 163(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35435956

RESUMO

Up to 6% of diabetes has a monogenic cause including mutations in the insulin gene, and patients are candidates for a gene therapy. Using a mouse model of permanent neonatal diabetes, we assessed the efficacy of an adeno-associated virus (AAV)-mediated gene therapy. We used AAVs with a rat insulin 1 promoter (Ins1) regulating a human insulin gene (INS; AAV Ins1-INS) or native mouse insulin 1 (Ins1; AAV Ins-Ins1) to deliver an insulin gene to ß-cells of constitutive insulin null mice (Ins1-/-Ins2-/-) and adult inducible insulin-deficient mice [Ins1-/-Ins2f/f PdxCreER and Ins1-/-Ins2f/f mice administered AAV Ins1-Cre)]. Although AAV Ins1-INS could successfully infect and confer insulin expression to ß-cells, insulin null ß-cells had a prohormone processing defect. Secretion of abundant proinsulin transiently reversed diabetes. We reattempted therapy with AAV Ins1-Ins1, but Ins1-/-Ins2-/- ß-cells still had a processing defect of both replaced Ins1 and pro-islet amyloid polypeptide (proIAPP). In adult inducible models, ß-cells that lost insulin expression developed a processing defect that resulted in impaired proIAPP processing and elevated circulating proIAPP, and cells infected with AAV Ins1-Ins1 to rescue insulin expression secreted proinsulin. We assessed the subcellular localization of prohormone convertase 1/3 (PC1/3) and detected defective sorting of PC1/3 to glycogen-containing vacuoles and retention in the endoplasmic reticulum as a potential mechanism underlying defective processing. We provide evidence that persistent production of endogenous proinsulin within ß-cells is necessary for ß-cells to be able to properly store and process proinsulin.


Assuntos
Células Secretoras de Insulina , Proinsulina , Animais , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Proinsulina/genética , Proinsulina/metabolismo , Ratos
11.
Diabetes ; 70(12): 2771-2784, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34544729

RESUMO

We previously demonstrated that male, but not female, Swiss Webster mice are susceptible to diabetes, with incidence increased by early overnutrition and high-fat diet (HFD). In this study, we investigated how HFD in Swiss Webster males and females during preweaning, peripubertal, and postpubertal periods alters glucose homeostasis and diabetes susceptibility. In males, HFD throughout life resulted in the highest diabetes incidence. Notably, switching to chow postpuberty was protective against diabetes relative to switching to chow at weaning, despite the longer period of HFD exposure. Similarly, HFD throughout life in males resulted in less liver steatosis relative to mice with shorter duration of postpubertal HFD. Thus, HFD timing relative to weaning and puberty, not simply exposure length, contributes to metabolic outcomes. Females were protected from hyperglycemia regardless of length or timing of HFD. However, postpubertal HFD resulted in a high degree of hepatic steatosis and adipose fibrosis, but glucose regulation and insulin sensitivity remained unchanged. Interestingly, peri-insulitis was observed in the majority of females but was not correlated with impaired glucose regulation. Our findings reveal critical periods of HFD-induced glucose dysregulation with striking sex differences in Swiss Webster mice, highlighting the importance of careful consideration of HFD timing relative to critical developmental periods.


Assuntos
Dieta Hiperlipídica , Glucose/metabolismo , Fenômenos Fisiológicos da Nutrição Pré-Natal , Animais , Animais Recém-Nascidos , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suscetibilidade a Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Feminino , Idade Gestacional , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos , Hipernutrição/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Caracteres Sexuais , Fatores de Tempo
12.
Nat Biomed Eng ; 5(10): 1202-1216, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34373602

RESUMO

Systemic immunosuppression for the mitigation of immune rejection after organ transplantation causes adverse side effects and constrains the long-term benefits of the transplanted graft. Here we show that protecting the endothelial glycocalyx in vascular allografts via the enzymatic ligation of immunosuppressive glycopolymers under cold-storage conditions attenuates the acute and chronic rejection of the grafts after transplantation in the absence of systemic immunosuppression. In syngeneic and allogeneic mice that received kidney transplants, the steric and immunosuppressive properties of the ligated polymers largely protected the transplanted grafts from ischaemic reperfusion injury, and from immune-cell adhesion and thereby immunocytotoxicity. Polymer-mediated shielding of the endothelial glycocalyx following organ procurement should be compatible with clinical procedures for transplant preservation and perfusion, and may reduce the damage and rejection of transplanted organs after surgery.


Assuntos
Glicocálix , Rejeição de Enxerto , Aloenxertos , Animais , Rejeição de Enxerto/prevenção & controle , Imunossupressores , Camundongos , Polímeros
13.
Sci Transl Med ; 12(557)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32817364

RESUMO

Antigen-specific regulatory T cells (Tregs) engineered with chimeric antigen receptors (CARs) are a potent immunosuppressive cellular therapy in multiple disease models and could overcome shortcomings of polyclonal Treg therapy. CAR therapy was initially developed with conventional T cells, which have different signaling requirements than do Tregs To date, most of the CAR Treg studies used second-generation CARs, encoding a CD28 or 4-1BB co-receptor signaling domain and CD3ζ, but it was not known if this CAR design was optimal for Tregs Using a human leukocyte antigen-A2-specific CAR platform and human Tregs, we compared 10 CARs with different co-receptor signaling domains and systematically tested their function and CAR-stimulated gene expression profile. Tregs expressing a CAR encoding CD28wt were markedly superior to all other CARs tested in an in vivo model of graft-versus-host disease. In vitro assays revealed stable expression of Helios and an ability to suppress CD80 expression on dendritic cells as key in vitro predictors of in vivo function. This comprehensive study of CAR signaling domain variants in Tregs can be leveraged to optimize CAR design for use in antigen-specific Treg therapy.


Assuntos
Receptores de Antígenos Quiméricos , Antígenos CD28 , Humanos , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Linfócitos T Reguladores
14.
Sci Rep ; 10(1): 10518, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601405

RESUMO

In vivo genetic manipulation is used to study the impact of gene deletion or re-expression on ß-cell function and organism physiology. Cre-LoxP is a system wherein LoxP sites flanking a gene are recognized by Cre recombinase. Cre transgenic mice are the most prevalent technology used to deliver Cre but many models have caveats of off-target recombination, impaired ß-cell function, and high cost of animal production. Inducible estrogen receptor conjugated Cre models face leaky recombination and confounding effects of tamoxifen. As an alternative, we characterize an adeno associated virus (AAV) with a rat insulin 1 promoter driving Cre recombinase (AAV8 Ins1-Cre) that is economical and rapid to implement, and has limited caveats. Intraperitoneal AAV8 Ins1-Cre produced efficient ß-cell recombination, alongside some hepatic, exocrine pancreas, α-cell, δ-cell, and hypothalamic recombination. Delivery of lower doses via the pancreatic duct retained good rates of ß-cell recombination and limited rates of off-target recombination. Unlike inducible Cre in transgenic mice, AAV8 Ins1-Cre required no tamoxifen and premature recombination was avoided. We demonstrate the utility of this technology by inducing hyperglycemia in inducible insulin knockout mice (Ins1-/-;Ins2f/f). AAV-mediated expression of Cre in ß-cells provides an effective alternative to transgenic approaches for inducible knockout studies.


Assuntos
Dependovirus , Células Secretoras de Insulina/metabolismo , Insulina/genética , Regiões Promotoras Genéticas , Recombinação Genética , Animais , Insulina/metabolismo , Integrases , Camundongos , Camundongos Transgênicos
15.
J Exp Med ; 217(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32478834

RESUMO

Adipose tissue (AT) regulatory T cells (T regs) control inflammation and metabolism. Diet-induced obesity causes hyperinsulinemia and diminishes visceral AT (VAT) T reg number and function, but whether these two phenomena were mechanistically linked was unknown. Using a T reg-specific insulin receptor (Insr) deletion model, we found that diet-induced T reg dysfunction is driven by T reg-intrinsic insulin signaling. Compared with Foxp3cre mice, after 13 wk of high-fat diet, Foxp3creInsrfl/fl mice exhibited improved glucose tolerance and insulin sensitivity, effects associated with lower AT inflammation and increased numbers of ST2+ T regs in brown AT, but not VAT. Similarly, Foxp3creInsrfl/fl mice were protected from the metabolic effects of aging, but surprisingly had reduced VAT T regs and increased VAT inflammation compared with Foxp3cre mice. Thus, in both diet- and aging-associated hyperinsulinemia, excessive Insr signaling in T regs leads to undesirable metabolic outcomes. Ablation of Insr signaling in T regs represents a novel approach to mitigate the detrimental effects of hyperinsulinemia on immunoregulation of metabolic syndrome.


Assuntos
Envelhecimento/imunologia , Dieta Hiperlipídica/efeitos adversos , Gordura Intra-Abdominal/imunologia , Síndrome Metabólica/imunologia , Receptor de Insulina/deficiência , Linfócitos T Reguladores/imunologia , Envelhecimento/genética , Envelhecimento/patologia , Animais , Deleção de Genes , Gordura Intra-Abdominal/patologia , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Camundongos , Camundongos Transgênicos , Receptor de Insulina/imunologia , Linfócitos T Reguladores/patologia
16.
Am J Transplant ; 20(6): 1562-1573, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31957209

RESUMO

Cell therapy with autologous donor-specific regulatory T cells (Tregs) is a promising strategy to minimize immunosuppression in transplant recipients. Chimeric antigen receptor (CAR) technology has recently been used successfully to generate donor-specific Tregs and overcome the limitations of enrichment protocols based on repetitive stimulations with alloantigens. However, the ability of CAR-Treg therapy to control alloreactivity in immunocompetent recipients is unknown. We first analyzed the effect of donor-specific CAR Tregs on alloreactivity in naive, immunocompetent mice receiving skin allografts. Tregs expressing an irrelevant or anti-HLA-A2-specific CAR were administered to Bl/6 mice at the time of transplanting an HLA-A2+ Bl/6 skin graft. Donor-specific CAR-Tregs, but not irrelevant-CAR Tregs, significantly delayed skin rejection and diminished donor-specific antibodies (DSAs) and frequencies of DSA-secreting B cells. Donor-specific CAR-Treg-treated mice also had a weaker recall DSA response, but normal responses to an irrelevant antigen, demonstrating antigen-specific suppression. When donor-specific CAR Tregs were tested in HLA-A2-sensitized mice, they were unable to delay allograft rejection or diminish DSAs. The finding that donor-specific CAR-Tregs restrain de novo but not memory alloreactivity has important implications for their use as an adoptive cell therapy in transplantation.


Assuntos
Receptores de Antígenos Quiméricos , Aloenxertos , Animais , Rejeição de Enxerto/prevenção & controle , Humanos , Isoantígenos , Camundongos , Linfócitos T Reguladores , Doadores de Tecidos
17.
Sci Rep ; 9(1): 3307, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824713

RESUMO

The relative contribution of peripheral and central leptin signalling to the regulation of metabolism and the mechanisms through which leptin affects glucose homeostasis have not been fully elucidated. We generated complementary lines of mice with either leptin receptor (Lepr) knockdown or reconstitution in adipose tissues using Cre-lox methodology. Lepr knockdown mice were modestly lighter and had lower plasma insulin concentrations following an oral glucose challenge compared to controls, despite similar insulin sensitivity. We rendered male mice diabetic using streptozotocin (STZ) and found that upon prolonged leptin therapy, Lepr knockdown mice had an accelerated decrease in blood glucose compared to controls that was associated with higher plasma concentrations of leptin and leptin receptor. Mice with transcriptional blockade of Lepr (LeprloxTB/loxTB) were obese and hyperglycemic and reconstitution of Lepr in adipose tissues of LeprloxTB/loxTB mice resulted in males reaching a higher maximal body weight. Although mice with adipose tissue Lepr reconstitution had lower blood glucose levels at several ages, their plasma insulin concentrations during an oral glucose test were elevated. Thus, attenuation or restoration of Lepr in adipocytes alters the plasma insulin profile following glucose ingestion, modifies the glucose-lowering effect of prolonged leptin therapy in insulin-deficient diabetes, and may modulate weight gain.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Experimental , Técnicas de Silenciamento de Genes , Receptores para Leptina , Tecido Adiposo/patologia , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Camundongos , Camundongos Transgênicos , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
18.
JCI Insight ; 4(6)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30753169

RESUMO

Chimeric antigen receptor (CAR) technology can be used to engineer the antigen specificity of regulatory T cells (Tregs) and improve their potency as an adoptive cell therapy in multiple disease models. As synthetic receptors, CARs carry the risk of immunogenicity, particularly when derived from nonhuman antibodies. Using an HLA-A*02:01-specific CAR (A2-CAR) encoding a single-chain variable fragment (Fv) derived from a mouse antibody, we developed a panel of 20 humanized A2-CARs (hA2-CARs). Systematic testing demonstrated variations in expression, and ability to bind HLA-A*02:01 and stimulate human Treg suppression in vitro. In addition, we developed a new method to comprehensively map the alloantigen specificity of CARs, revealing that humanization reduced HLA-A cross-reactivity. In vivo bioluminescence imaging showed rapid trafficking and persistence of hA2-CAR Tregs in A2-expressing allografts, with eventual migration to draining lymph nodes. Adoptive transfer of hA2-CAR Tregs suppressed HLA-A2+ cell-mediated xenogeneic graft-versus-host disease and diminished rejection of human HLA-A2+ skin allografts. These data provide a platform for systematic development and specificity testing of humanized alloantigen-specific CARs that can be used to engineer specificity and homing of therapeutic Tregs.


Assuntos
Isoantígenos/imunologia , Isoantígenos/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transferência Adotiva , Aloenxertos , Animais , Feminino , Antígenos HLA-A , Antígeno HLA-A2/imunologia , Humanos , Tolerância Imunológica , Imunoterapia , Imunoterapia Adotiva , Células K562 , Camundongos , Camundongos Transgênicos , Anticorpos de Cadeia Única , Pele/patologia , Transplante de Pele , Imunologia de Transplantes , Transplante Homólogo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Endocrinology ; 159(1): 83-102, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029025

RESUMO

Insulin receptor (IR) insufficiency in ß-cells leads to impaired insulin secretion and reduced ß-cell hyperplasia in response to hyperglycemia. Selective IR deficiency in ß-cells in later embryological development may lead to compensatory ß-cell hyperplasia. Although these findings suggest insulin signaling on the ß-cell is important for ß-cell function, they are confounded by loss of signaling by the insulinlike growth factors through the IR. To determine whether insulin itself is necessary for ß-cell development and maturation, we performed a characterization of pancreatic islets in mice with deletions of both nonallelic insulin genes (Ins1-/-Ins2-/-). We immunostained neonatal Ins1-/-Ins2-/- and Ins1+/+Ins2+/+ pancreata and performed quantitative polymerase chain reaction on isolated neonatal islets. Insulin-deficient islets had reduced expression of factors normally expressed in maturing ß-cells, including muscoloaponeurotic fibrosarcoma oncogene homolog A, homeodomain transcription factor 6.1, and glucose transporter 2. Ins1-/-Ins2-/-ß-cells expressed progenitor factors associated with stem cells or dedifferentiated ß-cells, including v-myc avian myolocytomatosis viral oncogene lung carcinoma derived and homeobox protein NANOG. We replaced insulin by injection or islet transplantation to keep mice alive into adulthood to determine whether insulin replacement was sufficient for the completed maturation of insulin-deficient ß-cells. Short-term insulin glargine (Lantus®) injections partially rescued the ß-cell phenotype, whereas long-term replacement of insulin by isogenic islet transplantation supported the formation of more mature ß-cells. Our findings suggest that tightly regulated glycemia, insulin species, or other islet factors are necessary for ß-cell maturation.


Assuntos
Hiperglicemia/cirurgia , Células Secretoras de Insulina/metabolismo , Insulina/deficiência , Transplante das Ilhotas Pancreáticas , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Feminino , Fibrose , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Terapia de Reposição Hormonal/efeitos adversos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/etiologia , Hiperglicemia/patologia , Injeções Subcutâneas , Insulina/genética , Insulina/metabolismo , Insulina Glargina/administração & dosagem , Insulina Glargina/efeitos adversos , Insulina Glargina/uso terapêutico , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Tecidos
20.
Mol Metab ; 5(8): 731-736, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27656411

RESUMO

OBJECTIVE: It has been thought that the depletion of insulin is responsible for the catabolic consequences of diabetes; however, evidence suggests that glucagon also plays a role in diabetes pathogenesis. Glucagon suppression by glucagon receptor (Gcgr) gene deletion, glucagon immunoneutralization, or Gcgr antagonist can reverse or prevent type 1 diabetes in rodents suggesting that dysregulated glucagon is also required for development of diabetic symptoms. However, the models used in these studies were rendered diabetic by chemical- or immune-mediated ß-cell destruction, in which insulin depletion is incomplete. Therefore, it is unclear whether glucagon suppression could overcome the consequence of the complete lack of insulin. METHODS: To directly test this we characterized mice that lack the Gcgr and both insulin genes (GcgrKO/InsKO). RESULTS: In both P1 pups and mice that were kept alive to young adulthood using insulin therapy, blood glucose and plasma ketones were modestly normalized; however, mice survived for only up to 6 days, similar to GcgrHet/InsKO controls. In addition, Gcgr gene deletion was unable to normalize plasma leptin levels, triglycerides, fatty acids, or hepatic cholesterol accumulation compared to GcgrHet/InsKO controls. CONCLUSION: Therefore, the metabolic manifestations associated with a complete lack of insulin cannot be overcome by glucagon receptor gene inactivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...